Tensor Methods for Signal Processing and Machine Learning

Qibin Zhao
Tensor Learning Unit RIKEN AIP

2018-6-9 @ Waseda University

Monographs

Tensor networks for dimensionality reduction and large optimization

Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao and Danilo P.Mandic

Multidimensional structured data

- Data ensemble affected by multiple factors
- Facial images (expression x people x illumination x views)
- Collaborative filtering (user x item x time)
- Multidimensional structured data, e.g.,
- EEG, ECoG (channel x time x

(c) frequency)
- fMRI (3D volume indexed by cartesian coordinate)
- Video sequences (width x height x frame)

Tensor Representation of EEG Signals

Tinal 3

- Matricization causes loss of useful multiway information.
- It is favorable to analyze multi-dimensional data in their own domain.

Outline

- Tensor Regression and Classification
- TensorNets for Deep Neural Networks Compression
- (Multi-)Tensor Completion
- Tensor Denoising

Machine Learning Tasks

- Supervised (and semi-supervised) learning predict a target y from an input x
\checkmark classification target y represents a category or class
\checkmark regression target y is real-value number
- Unsupervised learning no explicit prediction target y
\checkmark density estimation model the probability distribution of input x
\checkmark clustering, dimensionality reduction discover underlying structure in input x

Classical Regression Models

- Regression models
\checkmark predict one or more responses (dependent variables, outputs) from a set of predictors (independent variables, inputs)
\checkmark identify the key predictors (independent variables, inputs)
- Linear and nonlinear regression models
\checkmark linear model: simple regression, multiple regression, multivariate regression, generalized linear model, partial least squares (PLS)
\checkmark nonlinear model: Gaussian process (GP), artificial neural networks (ANN), support vector regression (SVR)

Linear

No linear relationship

Basic Linear Regression Model

- A basic linear regression model in vector form is defined as

$$
y=f(\mathbf{x} ; \mathbf{w}, b)=\langle\mathbf{x}, \mathbf{w}\rangle+b=\mathbf{w}^{\mathrm{T}} \mathbf{x}+b
$$

$\checkmark \mathrm{x} \in \mathbb{R}^{I}$ is the input vector of independent variables
$\checkmark \mathrm{w} \in \mathbb{R}^{I}$ is the vector of regression coefficients
$\checkmark b$ is the bias
$\checkmark y$ is the regression output or dependent/target variable

- Medical imaging data analysis
\checkmark MRI data x-coordinate $\times y$-coordinate $\times z$-coordinate
\checkmark fMRI data time $\times x$-coordinate $\times y$-coordinate \times z-coordinate
- Neural signal processing
\checkmark EEG data time \times frequency \times channel
- Computer vision
\checkmark video data frame $\times x$-coordinate $\times y$-coordinate
\checkmark face image data pixel \times illumination \times expression \times viewpoint \times identity
- Climate data analysis
\checkmark climate forecast data month \times location \times variable
- Chemistry
\checkmark fluorescence excitation-emission data sample \times excitation \times emission

Real-world Regression Tasks with Tensors

- Goal is to find association between brain images and clinical outcomes
\checkmark predictor 3rd-order tensor MRI images
\checkmark response scaler clinical diagnosis indicating one has some disease or not

Real-world Regression Tasks with Tensors Cont AIP

- Goal is to estimate 3D human pose positions from video sequences
\checkmark predictor 4th-order tensor RGB video (or depth video)
\checkmark response 3rd-order tensor human motion capture data

Real-world Regression Tasks with Tensors Cont AIP

- Goal is to reconstruct motion trajectories from brain signals
\checkmark predictor 4th-order tensor ECoG signals of monkey
\checkmark response 3rd-order tensor limb movement trajectories

Prediction of 3-D Hand Trajectory Using KTPLS

Motivations from New Regression Challenges AiP

- Classical regression models transform tensors into vectors via vectorization operations, then feed them to two-way data analysis techniques for solutions
\checkmark vectorizing operations destroy underlying multiway structures
i.e. spatial and temporal correlations are ignored among pixels in a fMRI
\checkmark ultrahigh tensor dimensionality produces huge parameters
i.e. a fMRI of size $100 \times 256 \times 256 \times 256$ yields 167 millions!
\checkmark difficulty of interpretation, sensitivity to noise, absence of uniqueness
- Tensor-based regression models directly model tensors using multiway factor models and multiway analysis techniques
\checkmark naturally preserve multiway structural knowledge which is useful in mitigating small sample size problem
\checkmark compactly represent regression coefficients using only a few parameters
\checkmark ease of interpretation, robust to noise, uniqueness property

Basic Tensor Regression Model

- A basic linear tensor regression model can be formulated as

$$
y=f(\underline{\mathbf{X}} ; \underline{\mathbf{W}}, b)=\langle\underline{\mathbf{X}}, \underline{\mathbf{W}}\rangle+b
$$

$\checkmark \underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$ is the input tensor predictor or tensor regressor
$\checkmark \underline{\mathbf{W}} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$ is the regression coefficients tensor
$\checkmark b$ is the bias
$\checkmark y$ is the regression output or dependent/target variable
$\checkmark\langle\underline{\mathbf{X}}, \underline{\mathbf{W}}\rangle=\operatorname{vec}(\underline{\mathbf{X}})^{\mathrm{T}} \operatorname{vec}(\underline{\mathbf{W}})$ is the inner product of two tensors
\checkmark sparse regularization like lasso penalty on $\underline{\mathbf{W}}$ further improves the performance

- The learning of the tensor regression model is typically formulated as the minimization of following squared cost function

$$
J(\underline{\mathbf{X}}, y \mid \underline{\mathbf{W}}, b)=\sum_{m=1}^{M}\left(y_{m}-\left(\left\langle\underline{\mathbf{W}}, \underline{\mathbf{x}}_{m}\right\rangle+b\right)\right)^{2}
$$

$\checkmark\left\{\underline{\mathbf{X}}_{m}, y_{m}\right\} m=1, \ldots, M$ are the M pairs of training samples

CP Regression Model

- The linear CP tensor regression [Zhou et. al 2013] model given by

$$
y=f(\underline{\mathbf{X}} ; \underline{\mathbf{W}}, b)=\langle\underline{\mathbf{X}}, \underline{\mathbf{W}}\rangle+b
$$

where the coefficient tensor $\underline{\mathbf{W}}$ is assumed to follow a CP decomposition

$$
\begin{aligned}
\underline{\mathbf{W}} & =\sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \mathbf{u}_{r}^{(2)} \circ \cdots \circ \mathbf{u}_{r}^{(N)} \\
& =\underline{\mathbf{I}} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \cdots \times_{N} \mathbf{U}^{(N)}
\end{aligned}
$$

- The advantages of CP regression
\checkmark substantial reduction in dimensionality
i.e. a $128 \times 128 \times 128$ MRI image, the parameters reduce from $2,097,157$ to 1157
via rank-3 decomposition
\checkmark low rank CP model could provide a sound recovery of many low rank signals
- The linear Tucker tensor regression [Li et. al 2013] model given by

$$
y=f(\underline{\mathbf{X}} ; \underline{\mathbf{W}}, b)=\langle\underline{\mathbf{X}}, \underline{\mathbf{W}}\rangle+b
$$

where the coefficient tensor $\underline{\mathbf{W}}$ is assumed to follow a Tucker decomposition

$$
\underline{\mathbf{W}}=\underline{\mathbf{G}} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \cdots \times_{N} \mathbf{U}^{(N)}
$$

- The shared advantages of Tucker regression with CP regression
\checkmark substantially reduce the dimensionality
\checkmark provide a sound low rank approximation to potentially high rank signal
- The advantages of Tucker regression over CP regression
\checkmark offer freedom in choice of different ranks when tensor data is skewed in dimensions
\checkmark explicitly model the interactions between factor matrices
- A general tensor regression model can be obtained when regression coefficient tensor $\underline{\mathbf{W}}$ is high-order than the input tensors $\underline{\mathbf{X}}_{m}$, leading to

$$
\underline{\mathbf{Y}}_{m}=\left\langle\underline{\mathbf{X}}_{m} \mid \underline{\mathbf{W}}\right\rangle+\underline{\mathbf{E}}_{m}, \quad m=1, \ldots, M
$$

$\checkmark \underline{\mathbf{X}}_{m} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$ is the Nth-order predictor tensor
$\checkmark \underline{\mathbf{W}} \in \mathbb{R}^{I_{1} \times \cdots \times I_{P}}$ is the Pth-order regression coefficient tensor with $P>N$
$\checkmark \underline{\mathbf{Y}} \in \mathbb{R}^{I_{P+1} \times \cdots \times I_{P}}$ is the (P-N)th-order response tensor
$\checkmark\left\langle\underline{\mathbf{X}}_{m} \mid \underline{\mathbf{W}}\right\rangle$ denotes a tensor contraction along the first N modes

- This model allows response to be a high-order tensor
- This model includes many linear tensor regression models as special cases i.e., CP regression, Tucker regression, etc
- Goal of partial least squares (PLS) regression is to predict the response matrix Y from the predictor matrix X, and describe their common latent structure
- The PLS regression consists of two steps
i) extract a set of latent variables of X and Y by performing a simultaneous decomposition of X and Y , such that maximum pairwise covariance is between the latent variables of X and the latent variables of Y
ii) use the extracted latent variables to predict Y

PLS for Matrix Regression Cont

- The standard PLS regression takes the form of

$$
\begin{aligned}
& \mathbf{X}=\mathbf{T} \mathbf{P}^{\mathrm{T}}+\mathbf{E}=\sum_{r=1}^{R} \mathbf{t}_{r} \mathbf{p}_{r}^{\mathrm{T}}+\mathbf{E}, \\
& \mathbf{Y}=\mathbf{T D C}
\end{aligned}
$$

$\checkmark \mathbf{X} \in \mathbb{R}^{I \times J}$ is the matrix predictor and $\mathbf{Y} \in \mathbb{R}^{I \times M}$ is the matrix response
$\checkmark \mathbf{T}=\left[\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{R}\right] \in \mathbb{R}^{I \times R}$ contains R latent variables from \mathbf{X}
$\checkmark \mathbf{U}=\mathbf{T D}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{R}\right] \in \mathbb{R}^{I \times R}$ represents R latent variables from \mathbf{Y}
\checkmark P and \mathbf{C} represent loadings or PLS regression coefficients

PLS for Matrix Regression Cont

- The PLS typically applies a deflation strategy to extract the latent variables $\mathbf{T}=\left[\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{R}\right] \in \mathbb{R}^{I \times R}$ and $\mathbf{U}=\mathbf{T D}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{R}\right] \in \mathbb{R}^{I \times R}$ as well as all the loadings
- A classical algorithm for the extraction process is called nonlinear iterative partial least squares PLS regression algorithm (NIPALS-PLS) [Wold, 1984]
- Having extracted all the factors, the prediction for the new test point \mathbf{X}^{*} can be performed by

$$
\mathbf{Y}^{*} \approx \mathbf{X}^{*} \mathbf{W D C}^{\mathrm{T}}
$$

here W is some weight matrix obtained from NIPALS-PLS algorithm

- Goal of high-order partial least squares (HOPLS) [Zhao et. al 2011] regression allows to predict the response tensor Y from the predictor tensor X and describe their common latent structure
- HOPLS extends PLS by projecting tensorial data onto a common latent subspace but using block Tucker decomposition [De Lathauwer, 2008]
- Similarly, HOPLS regression consists of two steps
i) extract a set of latent variables of tensor X and tensor Y by performing a simultaneous block Tucker decomposition of both tensor X and tensor Y , such that maximum pairwise covariance is between the latent variables of X and the latent variables of Y
ii) use the extracted latent variables to predict tensor Y

HOPLS Framework

- The standard HOPLS performs joint block Tucker decomposition of both predictor tensor and response tensor by

$$
\begin{aligned}
& \underline{\mathbf{X}}=\sum_{r=1}^{R} \underline{\mathbf{G}}_{x r} \times_{1} \mathbf{t}_{r} \times_{2} \mathbf{P}_{r}^{(1)} \cdots \times_{N+1} \mathbf{P}_{r}^{(N)}+\underline{\mathbf{E}}_{R} \\
& \underline{\mathbf{Y}}=\sum_{r=1}^{R} \underline{\mathbf{G}}_{y r} \times 1 \mathbf{t}_{r} \times_{2} \mathbf{Q}_{r}^{(1)} \cdots \times_{N+1} \mathbf{Q}_{r}^{(N)}+\underline{\mathbf{F}}_{R}
\end{aligned}
$$

$\checkmark \underline{\mathrm{X}} \in \mathbb{R}^{M \times I_{1} \times \cdots \times I_{N}}$ is the $(\mathrm{N}+1)$ th-order predictor tensor by concatenating M samples
$\checkmark \underline{\mathbf{Y}} \in \mathbb{R}^{M \times J_{1} \times \cdots \times J_{N}}$ is the $(\mathrm{N}+1)$ th-order response tensor having the same size M
$\checkmark \mathbf{t}_{r} \in \mathbb{R}^{M}$ is the latent variable for the r-th component
$\checkmark\left\{\mathbf{P}_{r}^{(n)}\right\}_{n=1}^{N} \in \mathbb{R}^{I_{n} \times L_{n}}$ and $\left\{\mathbf{Q}_{r}^{(n)}\right\}_{n=1}^{N} \in \mathbb{R}^{J_{n} \times K_{n}}$ are the loadings for r-th component
$\checkmark \underline{\mathbf{G}}_{x r} \in \mathbb{R}^{1 \times L_{1} \times \cdots \times L_{N}}$ and $\underline{\mathbf{G}}_{y r} \in \mathbb{R}^{1 \times K_{1} \times \cdots \times K_{N}}$ are the core tensors for r-th component

$$
\begin{aligned}
& \underline{\mathbf{X}}=\sum_{r=1}^{R} \underline{\mathbf{G}}_{x r} \times_{1} \mathbf{t}_{r} \times_{2} \mathbf{P}_{r}^{(1)} \cdots \times_{N+1} \mathbf{P}_{r}^{(N)}+\underline{\mathbf{E}}_{R} \\
& \underline{\mathbf{Y}}=\sum_{r=1}^{R} \underline{\mathbf{G}}_{y r} \times_{1} \mathbf{t}_{r} \times_{2} \mathbf{Q}_{r}^{(1)} \cdots \times_{N+1} \mathbf{Q}_{r}^{(N)}+\underline{\mathbf{F}}_{R}
\end{aligned}
$$

HOPLS Framework A Compact Formulation

- The standard HOPLS can be rewritten in a more compact form

$$
\begin{aligned}
& \underline{\mathbf{X}}=\underline{\mathbf{G}}_{x} \times_{1} \mathbf{T} \times_{2} \overline{\mathbf{P}}^{(1)} \cdots \times_{N+1} \overline{\mathbf{P}}^{(N)}+\underline{\mathbf{E}}_{R} \\
& \underline{\mathbf{Y}}=\underline{\mathbf{G}}_{y} \times_{1} \mathbf{T} \times_{2} \overline{\mathbf{Q}}^{(1)} \cdots \times_{N+1} \overline{\mathbf{Q}}^{(N)}+\underline{\mathbf{F}}_{R}
\end{aligned}
$$

$\checkmark \mathbf{T}=\left[\mathrm{t}_{1}, \ldots, \mathrm{t}_{R}\right]$ is the latent matrix
$\checkmark \overline{\mathbf{P}}^{(n)}=\left[\mathbf{P}_{1}^{(n)}, \ldots, \mathbf{P}_{R}^{(n)}\right]$ and $\overline{\mathbf{Q}}^{(n)}=\left[\mathbf{Q}_{1}^{(n)}, \ldots, \mathbf{Q}_{R}^{(n)}\right]$ are the loading matrix
$\checkmark \underline{\mathbf{G}}_{x}=\operatorname{blockdiag}\left(\underline{\mathbf{G}}_{x 1}, \ldots, \underline{\mathbf{G}}_{x R}\right) \in \mathbb{R}^{R \times R L_{1} \times \cdots \times R L_{N}}$ is the core tensor for input
$\checkmark \underline{\mathbf{G}}_{y}=\operatorname{blockdiag}\left(\underline{\mathbf{G}}_{y 1}, \ldots, \underline{\mathbf{G}}_{y R}\right) \in \mathbb{R}^{R \times R K_{1} \times \cdots \times R K_{N}}$ is the core tensor for output

HOPLS Experimental Results

- Goal to decode limb movement trajectories based on ECoG signals of monkey
\checkmark dataset ECoG food tracking data
\checkmark predictor 4th-order tensor sample \times time \times frequency \times channel
\checkmark response 3rd-order tensor sample \times time $\times 3$ D positions \times marker

Outline

- Tensor Regression
- TensorNets for Deep Neural Networks Compression
- (Multi-)Tensor Completion
- Tensor Denoising

Background

- Deep Neural Networks (DNNs) archives the state-of-art performance in many large-scale machine learning applications
\checkmark i.e. computation vision, speech recognition and text processing etc
- DNNs have thousands of nodes and millions of learnable parameters and are trained using millions of images on GPUs
- DNNs reaches the hardware limits both in terms the computational power and the memory
- DNNs reaches the memory limit with 89% [Simonyan and Zisserman, 2015] or even 100% [Xue et al, 2013] memory occupied by the weight matrices of the fullyconnected layers

VGGNet Example

- The huge number of parameters of FC layers is the bottleneck in a

typical DNN like VGGNet [Simonyan and Zisserman, 2015]

INPUT: [$224 \times 224 \times 3$] memory: $224^{*} 224^{*} 3=150 \mathrm{~K}$ params: 0 (not counting biases)
CONV3-64: [224×224x64] memory: $224^{*} 224^{\wedge} 64=3.2 \mathrm{M}$ params: $\left(3^{\prime} 3 \times 3\right)^{*} 64=1,728$
CONV3-64: [$224 \times 224 \times 64$] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$ POOL2: [112×112×64] memory: $112^{* 11} 2^{*} 64=800 \mathrm{~K}$ params: 0
CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV 3 -128: [$112 \times 112 \times 128$] memory: $112^{*} 112^{* 1} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$ POOL2: [$56 \times 56 \times 128$] memory: $56^{*} 56^{*} 128=400 \mathrm{~K}$ params: 0
CONV $3-256$: [$55 \times 56 \times 256]$ memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{\prime} 256=294,912$
CONV $3-256$: [$56 \times 56 \times 256$] memory: $56 * 56^{*} 256=800$ K params: $\left(3 * 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [$28 \times 28 \times 256$] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV $3-512$: $[28 \times 28 \times 512]$ memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3 * 3^{*} 256\right)^{*} 512=1,179,648$ CONV3-512: [$28 \times 28 \times 512$] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ CONV $3-512$: $[28 \times 28 \times 512]$ memory: $28^{\wedge} 28^{\wedge} 512=400 \mathrm{~K}$ params: $\left(3^{\prime} 3^{\prime} 512\right)^{\prime} 512=2,359,296$ POOL2: [$14 \times 14 \times 512$] memory: $14 * 14^{*} 512=100 \mathrm{~K}$ params: 0
CONV $3-512:[14 \times 14 \times 512]$ memory: $14^{*} 14 * 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ CONV $3-512$: $[14 \times 14 \times 512]$ memory: $14^{*} 14^{\prime} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{\prime} 512=2,358,296$ CONV $3-512$: $[14 \times 14 \times 512]$ memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$ POOL2: [7×7×512] memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1×1×4096] memory: 4096 params: $7 \times 7 \times 512^{\star} 4096=102,760,448$
FC. [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1×1×1000] memory: 1000 params: $4096^{* 1000}=4,096,000$

ConvNet Configuration			
B	C	D	
$\begin{gathered} \hline 13 \text { weight } \\ \text { layers } \end{gathered}$	16 weight layers	16 weight layers	19
sut (224 $\times 224$ RGB imagc			
$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	cc cc
maxpool			
$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	cor cor
maxpool			
$\begin{aligned} & \hline \text { canv3-256 } \\ & \text { canv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv } 3.256 \\ & \text { conv3-256 } \end{aligned}$	cor cot cot
такроб			
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512	cot cot cot
maxpoal			
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1 } 512 \end{aligned}$	conv3-512 conv3-512 cony3 512	cot cot cort
maxpool			
FC 1096			
FC-4096			
FC-1000			
soft-max			

TensorNet for DNN Compression

- TensorNet [Novikov et. al, 2015] applies tensor train (TT) [Oseledet, 2011] format to represent the dense weight matrix of the fully-connected layers using fewer parameters while keeping enough flexibility to perform signal transformations
- The advantages of TensorNet
\checkmark compatible with the existing training algorithms for neural networks
\checkmark match the performance of the uncompressed counterparts with compression factor of the weights of FC layer up to 200, 000 times leading to the compression factor of the whole network up to 7 times
\checkmark able to use more hidden units than was available before

Tensor Train Decomposition

- Recall that in index form, tensor train decomposition (TTD) can be represented by

$$
\mathcal{X}\left(i_{1}, i_{2}, \ldots, i_{d}\right) \approx \sum_{\alpha_{0}, \ldots, \alpha_{d}} \mathbf{G}_{1}\left[i_{1}\right]\left(\alpha_{0}, \alpha_{1}\right) \mathbf{G}_{2}\left[i_{2}\right]\left(\alpha_{1}, \alpha_{2}\right) \cdots \mathbf{G}_{d}\left[i_{d}\right]\left(\alpha_{d-1}, \alpha_{d}\right)
$$

\checkmark i.e. an illustration of TTD of 5th-order tensor

TT-vector

- TT-vector converts a long vector into a TT-format

\checkmark vector $\mathbf{b} \in \mathbb{R}^{N}$ where $N=\prod_{k=1}^{d} n_{k}$
\checkmark coordinate $\ell \in\{1, \ldots, N\}$ of vector $\mathbf{b} \in \mathbb{R}^{N}$
\checkmark d-dimensional vector-index $\mu(\ell)=\left(\mu_{1}(\ell), \mu_{2}(\ell), \ldots, \mu_{d}(\ell)\right)$ of tensorized \mathcal{B}, where $\mu_{k}(\ell) \in\left\{1, \ldots, n_{k}\right\}$
$\checkmark \mathcal{B}(\mu(\ell))=\mathbf{b}_{\ell}$ holds
\checkmark TT-format of \mathcal{B} is called TT-vector
- TT-matrix converts a big matrix into a TT-format

\checkmark matrix $\mathbf{W} \in \mathbb{R}^{M \times N}$ where $M=\prod_{k=1}^{d} m_{k}$ and $N=\prod_{k=1}^{d} n_{k}$
\checkmark row coordinate $t \in\{1, \ldots, M\}$ and column coordinate $\ell \in\{1, \ldots, N\}$ of
\checkmark d-dimensional vector-indices $(\nu(t), \mu(\ell))=\left(\nu_{1}(t), \mu_{1}(\ell), \ldots, \nu_{d}(t), \mu_{d}(\ell)\right)$ of \mathbf{W} tensorized \mathcal{W}, where $\mu_{k}(t) \in\left\{1, \ldots, m_{k}\right\}$ and $\mu_{k}(\ell) \in\left\{1, \ldots, n_{k}\right\}$
$\checkmark \mathcal{W}(\nu(t), \mu(\ell))=\mathbf{W}(t, \ell)$ holds
\checkmark TT-format of \mathcal{W} is called TT-matrix

$$
\mathcal{W}(\nu(t), \mu(\ell))=\mathbf{G}_{1}\left[\nu_{1}(t), \mu_{1}(\ell)\right] \mathbf{G}_{2}\left[\nu_{2}(t), \mu_{2}(\ell)\right] \cdots \mathbf{G}_{d}\left[\nu_{d}(t), \mu_{d}(\ell)\right]
$$

TT-layer

- Fully connected layers apply a linear transformation to N -dimensional input vector \mathbf{x}

$$
\mathbf{y}=\mathbf{W} \mathbf{x}+\mathbf{b}
$$

where the weight matrix $\mathbf{W} \in \mathbb{R}^{M \times N}$ and bias vector $\mathbf{b} \in \mathbb{R}^{M}$

- TT-layer transforms input \mathbf{x} (in TT-vector) by the weight \mathbf{W} (in TT-matrix), to the output

$$
\mathcal{Y}\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots, j_{d}} \mathbf{G}_{1}\left[i_{1}, j_{1}\right] \cdots \mathbf{G}_{d}\left[i_{d}, j_{d}\right] \mathcal{X}\left(j_{1}, \ldots, j_{d}\right)+\mathcal{B}\left(i_{1}, \ldots, i_{d}\right)
$$

- The application of TT-matrix-by-vector operation yields low computational complexity of forward pass $\mathcal{O}\left(d r^{2} m \max (M, N)\right)$
- The learning can be performed by applying back-propagation to FC layers to compute gradients w.r.t the tensor cores
- Substitution of FC layers with the TT-layers in VGG-16 and VGG-19 networks
\checkmark FC stands for a fully-connected layer
\checkmark TT‘\$' stands for a TT-layer with all the TT-ranks equal '\$'
\checkmark MR'\$' stands for a fully-connected layer with the matrix ranks restricted to '\$'
\checkmark The experiments report the compression factor of TT-layers; the resulting
compression factor of the whole network; the top1 and top5 classification errors

Architecture	TT-layers compr.	vgg-16 compr.	vgg-19 compr.	$\begin{array}{\|l\|} \mid v g g-16 \\ \text { top } 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \text { vgg-16 } \\ \text { top } 5 \end{array}$	$\begin{array}{\|l\|} \text { vgg-19 } \\ \text { top } 1 \\ \hline \end{array}$	$\begin{array}{\|l} \text { vgg-19 } \\ \text { top } 5 \end{array}$
FC FC FC	1	1	1	30.9	11.2	29.0	10.1
TT4 FC FC	50972	3.9	3.5	31.2	11.2	29.8	10.4
TT2 FC FC	194622	3.9	3.5	31.5	11.5	30.4	10.9
TT1 FC FC	713614	3.9	3.5	33.3	12.8	31.9	11.8
TT4 TT4 FC	37732	7.4	6	32.2	12.3	31.6	11.7
MR1 FC FC	3521	3.9	3.5	99.5	97.6	99.8	99
MR5 FC FC	704	3.9	3.5	81.7	53.9	79.1	52.4
MR50 FC FC	70	3.7	3.4	36.7	14.9	34.5	15.8

Outline

- Tensor Regression
- TensorNets for Deep Neural Networks Compression
- (Multi-)Tensor Completion
- Tensor Denoising

Tensor Completion

Tensor completion problem:

Tensor completion is to apply tensor method to infer a tensor with missing entries from partial observations.

Incomplete tensor

Completed tensor

Motivation

Social network analysis

Recommender system Collaborative filtering

Movie ratings (Netflix)

	item1	item2	item3	item4	item5	item6
user1						
user2						
user3						
user4						

	i,	i,	i		i		It	similar users based on profile
Jack	5	1	3		3	...	1	
L_{z}	0	4	0	0	0	...	5	
u_{0}	0	2	0		0		4	
Tom	4	1	4		4	+	2	
."-	
Myself	5	1	4		3		1	target
7				1				

Matrix Factorization for Incomplete Data

Challenges:

- ill-posed problem
- infinite solutions

Regularizations:

- Low-rank assumption
- Smoothness, non-negativity
- Singular Value Decomposition (SVD)
- Non-negative Matrix Factorization (NMF)
- Probabilistic Matrix Factorization (PMF)
- Gaussian Process Latent Variable Models (GPLVM)

Tensor Completion

Solving scheme 1 : low-rank assumption on tensor

Example: High accuracy LRTC (HaLRTC)

$$
\begin{aligned}
\min _{\mathcal{X}} & :\|\mathcal{X}\|_{*} \\
\text { s.t. }: & \mathcal{X}_{\Omega}=\mathcal{T}_{\Omega}
\end{aligned}
$$

Assume the tensor matricization of each mode is low -rank

Completed tensor

Tensor Completion

Mode-n matricization of a three-order tensor:

[Kolda, et al., 2009]

Technical problems

- Model selection problem
- Rank determination; tuning parameter selection
- Uncertainty information (confidence region)
- Point estimation by ML, MAP, or optimisation methods
- Overfitting problem
- Efficiency (MCMC, Gibbs inference - easy derivation but slow convergence; no analytic solution)

Tensor factorization with missing values

- Problem: Nth-order tensor is partially observed.

$$
\mathcal{Y}=\mathcal{X}+\varepsilon, \quad \varepsilon \sim \prod_{i_{1}, \ldots, i_{N}} \mathcal{N}\left(0, \tau^{-1}\right)
$$

Ω indicates observed indices \mathcal{O} is a indicator tensor

- True latent tensor is represented by a CP model with the minimum R

$$
\mathcal{X}=\sum_{r=1}^{R} \mathbf{a}_{r}^{(1)} \circ \cdots \circ \mathbf{a}_{r}^{(N)}=\llbracket \mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)} \rrbracket,
$$

- Sparsity imposed on latent dimensions of factors

$$
\mathcal{T}(x \mid 0, \lambda, \nu)=\int \mathcal{N}(x \mid 0, \tau) G a(\tau \mid a, b) d \tau
$$

Bayesian CP factorization

- Observation model (likelihood)

$$
\begin{aligned}
& p\left(\boldsymbol{Y}_{\Omega} \mid\left\{\mathbf{A}^{(n)}\right\}_{n=1}^{N}, \tau\right)=\prod_{i_{1}=1}^{I_{1}} \cdots \prod_{i_{N}=1}^{I_{N}} \\
& \mathcal{N}\left(\mathcal{Y}_{i_{1} i_{2} \ldots i_{N}} \mid\left\langle\mathbf{a}_{i_{1}}^{(1)}, \mathbf{a}_{i_{2}}^{(2)}, \cdots, \mathbf{a}_{i_{N}}^{(N)}\right\rangle, \tau^{-1}\right)^{\mathcal{O}_{i_{1} \ldots i_{n}}},
\end{aligned}
$$

- Priors of latent factors

$$
p\left(\mathbf{A}^{(n)} \mid \boldsymbol{\lambda}\right)=\prod_{i_{n}=1}^{I_{n}} \mathcal{N}\left(\mathbf{a}_{i_{n}}^{(n)} \mid \mathbf{0}, \boldsymbol{\Lambda}^{-1}\right), \forall n \in[1, N], \quad \boldsymbol{\Lambda}=\operatorname{diag}(\boldsymbol{\lambda})
$$

- Priors of hyper parameters

$$
p(\boldsymbol{\lambda})=\prod_{r=1}^{R} \mathrm{Ga}\left(\lambda_{r} \mid c_{0}^{r}, d_{0}^{r}\right), \quad p(\tau)=\mathrm{Ga}\left(\tau \mid a_{0}, b_{0}\right) . \quad \mathrm{Ga}(x \mid a, b)=\frac{b^{a} x^{a-1} e^{-b x}}{\Gamma(a)}
$$

Our objective

- The posterior distribution of all unknowns

$$
p\left(\Theta \mid \mathcal{Y}_{\Omega}\right)=\frac{p\left(\Theta, \boldsymbol{Y}_{\Omega}\right)}{\int p\left(\Theta, \boldsymbol{Y}_{\Omega}\right) d \Theta} . \quad \Theta=\left\{\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}, \boldsymbol{\lambda}, \tau\right\}
$$

- Predictive distribution for missing entries

$$
p\left(\boldsymbol{\mathcal { Y }}_{\Omega} \mid \mathcal{Y}_{\Omega}\right)=\int p\left(\boldsymbol{\mathcal { Y }}_{\backslash \Omega} \mid \Theta\right) p\left(\Theta \mid \mathcal{Y}_{\Omega}\right) \mathrm{d} \Theta
$$

- Analytic intractable and resort to approximate inference
- Variation Bayesian inference; Expectation propagation
- Sampling methods such as MCMC gibbs

Model learning via Bayesian Inference

- KL divergence between approximation and true posterior distributions

$$
\begin{aligned}
& \operatorname{KL}(q(\Theta) \| p(\Theta \mid \mathcal{Y}))=\int q(\Theta) \ln \left\{\frac{q(\Theta)}{p(\Theta \mid \mathcal{Y})}\right\} \\
& =\ln p(\mathcal{Y})-\int q(\Theta) \ln \left\{\frac{p(\mathcal{Y}, \Theta)}{q(\Theta)}\right\} d \Theta
\end{aligned}
$$

- Factorization of approximation distributions

$$
q(\Theta)=q_{\lambda}(\boldsymbol{\lambda}) q_{\tau}(\tau) \prod_{n=1}^{N} q_{n}\left(\mathbf{A}^{(n)}\right) .
$$

- Approximation for posterior distributions

$$
q_{n}\left(\mathbf{A}^{(n)}\right)=\prod_{i_{n}=1}^{I_{n}} \mathcal{N}\left(\mathbf{a}_{i_{n}}^{(n)} \mid \tilde{\mathbf{a}}_{i_{n}}^{(n)}, \mathbf{V}_{i_{n}}^{(n)}\right), \quad q_{\boldsymbol{\lambda}}(\boldsymbol{\lambda})=\prod_{r=1}^{R} \mathrm{Ga}\left(\lambda_{r} \mid c_{M}^{r}, d_{M}^{r}\right), \quad q_{\tau}(\tau)=\mathrm{Ga}\left(\tau \mid a_{M}, b_{M}\right)
$$

Model learning

- Posterior of latent factors

$$
q_{n}\left(\mathbf{A}^{(n)}\right)=\prod_{i_{n}=1}^{I_{n}} \mathcal{N}\left(\mathbf{a}_{i_{n}}^{(n)} \mid \tilde{\mathbf{a}}_{i_{n}}^{(n)}, \mathbf{V}_{i_{n}}^{(n)}\right)
$$

$$
\begin{aligned}
\tilde{\mathbf{a}}_{i_{n}}^{(n)} & =\mathbb{E}_{q}[\tau] \mathbf{V}_{i_{n}}^{(n)} \mathbb{E}_{q}\left[\mathbf{A}_{i_{n}}^{(\backslash n) T}\right] \operatorname{vec}\left(\mathcal{Y}_{\mathbb{I}\left(\mathcal{O}_{i_{n}}=1\right)}\right) \\
\mathbf{V}_{i_{n}}^{(n)} & =\left(\mathbb{E}_{q}[\tau] \mathbb{E}_{q}\left[\mathbf{A}_{i_{n}}^{(\backslash n) T} \mathbf{A}_{i_{n}}^{(\backslash n)}\right]+\mathbb{E}_{q}[\mathbf{\Lambda}]\right)^{-1} \\
\mathbf{A}_{i_{n}}^{(\backslash n) T} & =\left(\bigodot_{k \neq n} \mathbf{A}^{(k)}\right)_{\mathbb{I}\left(\mathcal{O}_{i_{n}}=1\right)}^{T}
\end{aligned}
$$

Variational Message Passing

Model learning

- Posterior of hyper parameters- precision of latent factor

$$
\begin{aligned}
q_{\boldsymbol{\lambda}}(\boldsymbol{\lambda})=\prod_{r=1}^{R} \mathrm{Ga}\left(\lambda_{r} \mid c_{M}^{r}, d_{M}^{r}\right), & c_{M}^{r}=c_{0}^{r}+\frac{1}{2} \sum_{n=1}^{N} I_{n} \\
& d_{M}^{r}=d_{0}^{r}+\frac{1}{2} \sum_{n=1}^{N} \mathbb{E}_{q}\left[\mathbf{a}_{\cdot r}^{(n) T} \mathbf{a}_{\cdot r}^{(n)}\right]
\end{aligned}
$$

- Posterior of noise precision

$$
\begin{aligned}
& q_{\tau}(\tau)=\operatorname{Ga}\left(\tau \mid a_{M}, b_{M}\right), \\
& a_{M}=a_{0}+\frac{1}{2} \sum_{i_{1}, \ldots, i_{N}} \mathcal{O}_{i_{1}, \ldots, i_{N}} \\
& b_{M}=b_{0}+\frac{1}{2} \mathbb{E}_{q}\left[\left\|\mathcal{O} \circledast\left(\mathcal{Y}-\llbracket \mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)} \rrbracket\right)\right\|_{F}^{2}\right] .
\end{aligned}
$$

Demonstration of learning procedure

- Size $10 \times 10 \times 10$
- Rank =5
$\forall n, \forall i_{n}, \mathbf{a}_{i_{n}}^{(n)} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{R}\right)$,
$\varepsilon \sim \prod_{i_{1}, \ldots, i_{N}} \mathcal{N}\left(0, \sigma^{2}\right)$
$\sigma^{-2}=1000$

Image Completion

Missing rate

Facial image synthesis

Matrix factorization does not work when one entire row or column is missing

- 3D basel face model
- image size 68×68
- 10 people $\times 9$ poses $\times 3$ illuminations
- large variants of faces captured from surveillance video
- Robust face recognition

Bayesian Sparse Tucker Decomposition

- Model assumption: Observed Nth-order tensor $\mathcal{Y} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$

$$
\mathcal{Y}=\mathcal{X}+\varepsilon, \quad \mathcal{X}=\mathcal{G} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times \cdots \times_{N} \mathbf{U}^{(N)} .
$$

- Likelihood function:

$$
\operatorname{vec}(\mathcal{Y}) \mid\left\{\mathbf{U}^{(n)}\right\}, \mathcal{G}, \tau \sim \mathcal{N}\left(\left(\bigotimes_{n} \mathbf{U}^{(n)}\right) \operatorname{vec}(\mathcal{G}), \tau^{-1} \mathbf{I}\right)
$$

- Priors over model parameters:

$$
\begin{aligned}
\tau & \sim G a\left(a_{0}^{\tau}, b_{0}^{\tau}\right) \\
\operatorname{vec}(\mathcal{G}) \mid\left\{\boldsymbol{\lambda}^{(n)}\right\}, \beta & \sim \mathcal{N}\left(\mathbf{0},\left(\beta \bigotimes_{n} \boldsymbol{\Lambda}^{(n)}\right)^{-1}\right), \\
\beta & \sim G a\left(a_{0}^{\beta}, b_{0}^{\beta}\right) \\
\mathbf{u}_{i_{n}}^{(n)} \mid \boldsymbol{\lambda}^{(n)} & \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Lambda}^{(n)^{-1}}\right), \quad \forall n, \forall i_{n}
\end{aligned}
$$

Student-t: $\quad \lambda_{r_{n}}^{(n)} \sim G a\left(a_{0}^{\lambda}, b_{0}^{\lambda}\right), \quad \forall n, \forall r_{n}$,
Laplace: $\quad \lambda_{r_{n}}^{(n)} \sim \operatorname{IG}\left(1, \frac{\gamma}{2}\right), \quad \forall n, \forall r_{n}$,

$$
\gamma \sim G a\left(a_{0}^{\gamma}, b_{0}^{\gamma}\right) .
$$

* Group Sparsity priors over factors * Slice sparsity priors over cores
* Shared sparsity patterns between cores and factors

$$
\begin{aligned}
& \text { Joint distribution of the model } \\
& p(\boldsymbol{y}, \Theta)=p\left(\boldsymbol{\mathcal { Y }} \mid\left\{\mathbf{U}^{(n)}\right\}, \mathcal{G}, \tau\right) \prod_{n} p\left(\mathbf{U}^{(n)} \mid \boldsymbol{\lambda}^{(n)}\right) \\
& \quad \times p\left(\mathcal{G} \mid\left\{\boldsymbol{\Lambda}^{(n)}\right\}, \beta\right) \prod_{n} p\left(\boldsymbol{\lambda}^{(n)} \mid \gamma\right) p(\gamma) p(\beta) p(\tau) .
\end{aligned}
$$

Model Inference

- Variational Bayesian

$$
q(\Theta)=q(\mathcal{G}) q(\beta) \prod_{n} q\left(\mathbf{U}^{(n)}\right) \prod_{n} q\left(\boldsymbol{\lambda}^{(n)}\right) q(\gamma) q(\tau) .
$$

- Posterior of the core tensor

$$
q(\mathcal{G})=\mathcal{N}\left(\operatorname{vec}(\mathcal{G}) \mid \operatorname{vec}(\widetilde{\mathcal{G}}), \Sigma_{G}\right),
$$

$$
\begin{gathered}
\operatorname{vec}(\tilde{\mathcal{G}})=\mathbb{E}[\tau] \Sigma_{G}\left(\bigotimes_{n} \mathbb{E}\left[\mathbf{U}^{(n) T}\right]\right) \operatorname{vec}(\mathcal{Y}), \\
\Sigma_{G}=\left\{\mathbb{E}[\beta] \bigotimes_{n} \mathbb{E}\left[\boldsymbol{\Lambda}^{(n)}\right]+\mathbb{E}[\tau] \bigotimes_{n} \mathbb{E}\left[\mathbf{U}^{(n) T} \mathbf{U}^{(n)}\right]\right\}^{-1}
\end{gathered}
$$

- Posterior of noise precision τ

$$
\begin{aligned}
& q(\tau)=G a\left(a_{M}^{\tau}, b_{M}^{\tau}\right) \\
& a_{M}^{\tau}=a_{0}^{\tau}+\frac{1}{2} \prod_{n} I_{n}, \\
& b_{M}^{\tau}=b_{0}^{\tau}+\frac{1}{2} \mathbb{E}\left[\left\|\operatorname{vec}(\boldsymbol{\mathcal { Y }})-\left(\bigotimes_{n} \mathbf{U}^{(n)}\right) \operatorname{vec}(\mathcal{G})\right\|_{F}\right]
\end{aligned}
$$

- Posterior of factor matrices

$$
\begin{gather*}
q\left(\mathbf{U}^{(n)}\right)=\prod_{i_{n}=1}^{I_{n}} \mathcal{N}\left(\mathbf{u}_{i_{n}}^{(n)} \mid \widetilde{\mathbf{u}}_{i_{n}}^{(n)}, \Psi^{(n)}\right), n=1, \ldots, N, \\
\widetilde{\mathbf{U}}^{(n)}=\mathbb{E}[\tau] \mathbf{Y}_{(n)}\left(\bigotimes_{k \neq n} \mathbb{E}\left[\mathbf{U}^{(k)}\right]\right) \mathbb{E}\left[\mathbf{G}_{(n)}^{T}\right] \Psi^{(n)}, \tag{17}\\
\Psi^{(n)}=\left\{\mathbb{E}\left[\boldsymbol{\Lambda}^{(n)}\right]+\mathbb{E}[\tau] \mathbb{E}\left[\mathbf{G}_{(n)}\left(\bigotimes_{k \neq n} \mathbf{U}^{(k) T} \mathbf{U}^{(k)}\right) \mathbf{G}_{(n)}^{T}\right]\right\}_{(18)}^{-1} . \tag{18}
\end{gather*}
$$

- Posterior of $\boldsymbol{\lambda}^{(n)}, \quad n=1, \ldots, N$

$$
\begin{aligned}
q\left(\boldsymbol{\lambda}^{(n)}\right) & =\prod_{r_{n}=1}^{R_{n}} G a\left(\lambda_{r_{n}}^{(n)} \mid \tilde{a}_{r_{n}}^{(n)}, \tilde{b}_{r_{n}}^{(n)}\right), \\
\tilde{a}_{r_{n}}^{(n)}= & a_{0}^{\lambda}+\frac{1}{2}\left(I_{n}+\prod_{k \neq n} R_{k}\right), \\
\tilde{b}_{r_{n}}^{(n)}= & b_{0}^{\lambda}+\frac{1}{2} \mathbb{E}\left[\mathbf{u}_{\cdot r_{n}}^{(n) T} \mathbf{u}_{r_{n}}^{(n)}\right] \\
& +\frac{1}{2} \mathbb{E}[\beta] \mathbb{E}\left[\operatorname{vec}\left(\mathcal{G}_{\ldots r_{n}}^{2} \ldots\right)^{T}\right] \bigotimes_{k \neq n} \mathbb{E}\left[\boldsymbol{\lambda}^{(k)}\right] .
\end{aligned}
$$

Bayesian Sparse Tucker Completion

- Model assumption: Nth-order tensor $\mathcal{Y} \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$

$$
\mathcal{Y}_{\Omega}=\mathcal{X}_{\Omega}+\varepsilon \quad \mathcal{X}=\mathcal{G} \times_{1} \mathbf{U}^{(1)} \times_{2} \mathbf{U}^{(2)} \times \cdots \times_{N} \mathbf{U}^{(N)} .
$$

Ω denotes a set of N-tuple indices

$$
\mathcal{O}_{i_{1} \cdots i_{N}}=1 \text { if }\left(i_{1}, \ldots, i_{N}\right) \in \Omega
$$

- Likelihood function:

$$
\mathcal{y}_{i_{1} \cdots i_{N}} \mid\left\{\mathbf{u}_{i_{n}}^{(n)}\right\}, \mathcal{G}, \tau \sim \mathcal{N}\left(\left(\bigotimes_{n} \mathbf{u}_{i_{n}}^{(n) T}\right) \operatorname{vec}(\mathcal{G}), \tau^{-1}\right)^{\mathcal{O}_{i_{1} \cdots i_{N}}}
$$

- Priors over model parameters are same as BSTD
- Model inference are different for core tensor G, factor matrices \boldsymbol{U}, and noise precision τ
- Predictive distribution over missing entries

$$
p\left(\mathcal{Y}_{i_{1} \cdots i_{N}} \mid \mathcal{Y}_{\Omega}\right)=\int p\left(\mathcal{Y}_{i_{1} \cdots i_{N}} \mid \Theta\right) p\left(\Theta \mid \mathcal{Y}_{\Omega}\right) \mathrm{d} \Theta
$$

Demonstration of Learning Procedure

- Tensor: $20 \times 20 \times 20$ with 70% missing elements
- Multilinear rank: $2 \times 3 \times 3$

MRI Dataset

TABLE III
The performance of MRI completion evaluated by PSNR and RRSE. For noisy Mri, the standard derivation of GAUSSIAN NOISE IS 3% OF BRIGHTEST TISSUE. MRI TENSOR IS OF SIZE $181 \times 217 \times 165$ AND EACH BLOCK TENSOR IS OF SIZE $50 \times 50 \times 10$.

	50\%				60\%				70\%				80\%			
	Original		Noisy													
BSTC-T	27.32	0.11	26.18	0.12	25.30	0.14	24.60	0.15	22.81	0.18	22.35	0.19	20.14	0.25	20.00	0.25
BSTC-L	26.91	0.11	25.57	0.13	24.84	0.15	23.95	0.16	22.76	0.19	22.09	0.20	20.12	0.25	19.80	0.26
iHOOI	22.69	0.19	21.45	0.22	22.47	0.19	21.16	0.22	21.63	0.21	20.11	0.25	18.65	0.30	17.89	0.32
HaLRTC	24.84	0.15	23.60	0.17	22.35	0.19	21.65	0.21	19.93	0.26	19.55	0.27	17.37	0.34	17.15	0.35

Bayesian Robust Tensor Factorization

- Model specification

$$
\begin{aligned}
& p\left(\mathcal{Y}_{\Omega} \mid\left\{\mathbf{A}^{(n)}\right\}_{n=1}^{N}, \mathcal{S}_{\Omega}, \tau\right)=\prod_{i_{1}=1}^{I_{1}} \cdots \prod_{i_{N}=1}^{I_{N}} \\
& \mathcal{N}\left(\mathcal{Y}_{i_{1} \ldots i_{N}} \mid\left\langle\mathbf{a}_{i_{1}}^{(1)}, \cdots, \mathbf{a}_{i_{N}}^{(N)}\right\rangle+\mathcal{S}_{i_{1} \ldots i_{N}}, \tau^{-1}\right)^{\mathcal{O}_{i_{1} \ldots i_{N}}}
\end{aligned}
$$

$$
\begin{align*}
p\left(\mathbf{A}^{(n)} \mid \boldsymbol{\lambda}\right) & =\prod_{i_{n}=1}^{I_{n}} \mathcal{N}\left(\mathbf{a}_{i_{n}}^{(n)} \mid \mathbf{0}, \boldsymbol{\Lambda}^{-1}\right), \forall n \in[1, N] \tag{7}\\
p(\boldsymbol{\lambda}) & =\prod_{r=1}^{R} \mathrm{Ga}\left(\lambda_{r} \mid c_{0}, d_{0}\right), \tag{8}
\end{align*}
$$

$$
\begin{aligned}
p\left(\mathcal{S}_{\Omega} \mid \gamma\right) & =\prod_{i_{1}, \ldots, i_{N}} \mathcal{N}\left(\mathcal{S}_{i_{1} \ldots i_{N}} \mid 0, \gamma_{i_{1} \ldots i_{N}}^{-1}\right)^{\mathcal{O}_{i_{1} \ldots i_{N}}}, \\
p(\gamma) & =\prod_{i_{N}} \operatorname{Ga}\left(\gamma_{i_{1} \ldots i_{N}} \mid a_{0}^{\gamma}, b_{0}^{\gamma}\right) .
\end{aligned}
$$

- Joint distribution

$$
p\left(\mathcal{Y}_{\Omega} \mid\left\{\mathbf{A}^{(n)}\right\}_{n=1}^{N}, \boldsymbol{\mathcal { S }}_{\Omega}, \tau\right) \prod_{n=1}^{N} p\left(\mathbf{A}^{(n)} \mid \boldsymbol{\lambda}\right) p\left(\boldsymbol{\mathcal { S }}_{\Omega} \mid \boldsymbol{\gamma}\right) p(\boldsymbol{\lambda}) p(\gamma) p(\tau)
$$

Q. Zhao et al, IEEE TNNLS,2016

Demo of the model learning procedure

- Tensor size: $30 \times 30 \times 30$
- CP rank: $R=3$
- Gaussian noise: $\mathrm{SNR}=$ 20dB
- Missing rate: 80%
- Outliers: rate $=5 \%, \mathrm{M}=$ 10*std(X);
- Maximal rank is set to 10.

Original
PCP
GoDec
DRMF

BRTF

PRMF

BRMF

DECOLOR
BRTF

Original

$1 / 100$

GoDec

RegL1ALM VBRPCA

Original

RegL1ALM VBRPCA
PRMF
BRMF
DECOLOR
BRTF

Videos with 90\% missing pixels

Tensor Completion

Solving scheme 3: tensor decomposition by gradient-based optimization

Find the low-rank tensor decomposition by observed entries.

Tensor Completion

Tensor train decomposition (TTD)

Decompose a tensor $\mathcal{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ to TT format:
tensor train: \mathcal{X} :

Core tensor: $\mathcal{G}^{(n)} \in \mathbb{R}^{r_{n-1} \times I_{n} \times r_{n}}$,
Silce: $\mathbf{G}^{(n)} \in \mathbb{R}^{r_{n-1} \times r_{n}}$,
TT-rank: $\left\{r_{0}, r_{1}, \cdots, r_{N}\right\}, r_{0}=r_{N}=1$,

$$
n=1,2, \cdots, N .
$$

For each element:

$$
x_{i_{1} \cdots i_{N}}=\prod_{n=1}^{N} \mathbf{G}_{i_{n}}^{(n)}
$$

Tensor Completion

Tensor train stochastic gradient descent (TT-SGD)

For one observed entry:
The approximation of TTD: $x_{m}=\prod_{n=1}^{N} \mathbf{G}_{i_{n}^{m}}^{(n)}$
Loss function: $f\left(\mathbf{G}_{i_{2}^{m}}^{(1)} \mathbf{G}_{i 2_{2}}^{(2)}, \cdots, \mathbf{G}_{i \underset{N}{2}}^{(N)}\right)=\frac{1}{2}\left\|y_{m}-\prod_{n=1}^{N} \mathbf{G}_{i m}^{(n)}\right\|_{F}$

The gradient for according slice of core tensor:

$$
\frac{\partial f}{\partial \mathbf{G}_{i_{n}^{m}}^{(n)}}=\left(x_{m}-y_{m}\right)\left(\mathbf{G}_{i_{n}^{m}}^{>n} \mathbf{G}_{i_{n}^{m}}^{<n}\right)^{T}, n=1, \ldots, N
$$

Where

$$
\mathbf{G}_{i_{n}^{m}}^{>n}=\prod_{n=n+1}^{N} \mathbf{G}_{i_{n}^{m}}^{(n)}, \mathbf{G}_{i_{n}^{m}}^{<n}=\prod_{n=1}^{n-1} \mathbf{G}_{i_{n}^{m}}^{(n)} .
$$

Tensor Completion

TT-SGD overview

Observed data

Higher-order tensor

Low-rank TT approximation

Recovered missing data

Tensor Completion

Experiment results

Tensor Completion

High-order tensorization

$c=1$

Tensorization for a $256 \times 256 \times 3$ image
From 3-way to 9-way
1.Reshape $256 \times 256 \times 3$ to $2 \times 2 \times \ldots \times 2 \times 3$ (17-way tensor).
2.Permute by $\{19210311412513614715816$ 17\}.
3.Reshape to $4 \times 4 \times 3$ (9 -way tensor).

Better data structure

The first order represent a 2×2 pixel block.
The second order represent four 2×2 pixel block.

This can catch more structure relation of data.

Tensor Completion

Comparison of applying tensorization

90\% random missing

Outline

- Tensor Regression
- TensorNets for Deep Neural Networks Compression
- (Multi-)Tensor Completion
- Tensor Denoising

Tensor denoising

IEEE TIP 2013; IEEE TPAMI 2013

Noise variance is reauired!!!

Automatic noise estimation

Noisy MRI (T1)

- $181 \times 217 \times 165$
- Noise std = 10\% max value
- PSNR = 22dB

Denoised MRI

- $\operatorname{PSNR}=36 \mathrm{~dB}$

Original

Uniginai

Noisy

inolsy

Denoised

Learning efficient tensor representations with ring structure networks (ICLR Workshop 2018)

* Motivation:
- Tensor train is too strict due to $r_{1}=r_{d+1}=1$
- TT-ranks are bounded by the rank of k-unfolding matricization
- Inconsistent solution from permutation of data
* Proposed model:
- More generalized model without constraint $r_{1}=r_{d+1}=1$
- Sum of TT with partially shared core tensors
- Tensor ring ranks: $\exists k, r_{1} r_{k+1} \leq{ }^{\prime} R_{k+1} . \quad \operatorname{Rank}\left(\mathbf{T}_{\langle k\rangle}\right)=R_{k+1}$,

$$
T\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\operatorname{Tr}\left\{\mathbf{Z}_{1}\left(i_{1}\right) \mathbf{Z}_{2}\left(i_{2}\right) \cdots \mathbf{Z}_{d}\left(i_{d}\right)\right\}=\operatorname{Tr}\left\{\prod_{k=1}^{d} \mathbf{Z}_{k}\left(i_{k}\right)\right\} .
$$

Tensor Ring Decomposition

- Scalar representation

$$
T\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{d}=1}^{r_{1}, \ldots, r_{d}} \prod_{k=1}^{d} Z_{k}\left(\alpha_{k}, i_{k}, \alpha_{k+1}\right)
$$

- Slice representation

$$
T\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\operatorname{Tr}\left\{\mathbf{Z}_{1}\left(i_{1}\right) \mathbf{Z}_{2}\left(i_{2}\right) \cdots \mathbf{Z}_{d}\left(i_{d}\right)\right\},
$$

Algorithms:

$$
\begin{align*}
& T\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\operatorname{Tr}\left(\mathbf{Z}_{2}\left(i_{2}\right), \mathbf{Z}_{3}\left(i_{3}\right), \ldots, \mathbf{Z}_{d}\left(i_{d}\right), \mathbf{Z}_{1}\left(i_{1}\right)\right) \\
&=\cdots=\operatorname{Tr}\left(\mathbf{Z}_{d}\left(i_{d}\right), \mathbf{Z}_{1}\left(i_{1}\right), \ldots, \mathbf{Z}_{d-1}\left(i_{d-1}\right)\right) . \tag{4}
\end{align*}
$$

Circular dimensional permutation invariance

- Sequential SVDs

$$
\begin{aligned}
& T_{\langle 1\rangle}\left(i_{1}, \overline{i_{2} \cdots i_{d}}\right)=\sum_{\alpha_{1}, \alpha_{2}} Z^{\leq 1}\left(i_{1}, \overline{\alpha_{1} \alpha_{2}}\right) Z^{>1}\left(\overline{\alpha_{1} \alpha_{2}}, \overline{i_{2} \cdots i_{d}}\right) \\
& Z^{>1}\left(\overline{\alpha_{2} i_{2}}, \overline{i_{3} \cdots i_{d} \alpha_{1}}\right)=\sum_{\alpha_{3}} Z_{2}\left(\overline{\alpha_{2} i_{2}}, \alpha_{3}\right) Z^{>2}\left(\alpha_{3}, \overline{i_{3} \cdots i_{d} \alpha_{1}}\right)
\end{aligned}
$$

- ALS algorithm

$$
\mathbf{T}_{[k]}=\mathbf{Z}_{k(2)}\left(\mathbf{z}_{[2]}^{\neq k}\right)^{T},
$$

- Block-wise ALS algorithm

Properties of TR Representation

- Sum of tensors
$\begin{array}{ll}\mathcal{T}_{1}=\Re\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{d}\right) & \mathcal{T}_{3}=\boldsymbol{\mathcal { T }}_{1}+\boldsymbol{\mathcal { T }}_{2}, \\ \boldsymbol{\mathcal { T }}_{2}=\Re\left(\mathcal{Y}_{1}, \ldots, \boldsymbol{\mathcal { Y }}_{d}\right), & \mathcal{T}_{3}=\Re\left(\boldsymbol{\mathcal { X }}_{1}, \ldots, \boldsymbol{\mathcal { X }}_{d}\right),\end{array} \quad \mathbf{X}_{k}\left(i_{k}\right)=\left(\begin{array}{cc}\mathbf{Z}_{k}\left(i_{k}\right) & 0 \\ 0 & \mathbf{Y}_{k}\left(i_{k}\right)\end{array}\right), \begin{gathered}i_{k}=1, \ldots, n_{k}, \\ k=1, \ldots, d .\end{gathered}$
- Multilinear products

$$
\begin{aligned}
& \mathcal{T}=\Re\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{d}\right) \quad c=\boldsymbol{T} \times_{1} \mathbf{u}_{1}^{T^{\tau}} \times_{2} \cdots \times_{d} \mathbf{u}_{d}^{T} \\
& c=\Re\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{d}\right) \text { where } \mathbf{X}_{k}=\sum_{i_{k}=1}^{n_{k}} \mathbf{Z}_{k}\left(i_{k}\right) u_{k}\left(i_{k}\right) .
\end{aligned}
$$

- Hadamard product of tensors

$$
\mathcal{T}_{3}=\mathcal{T}_{1} \circledast \mathcal{T}_{2}=\Re\left(\mathcal{X}_{1}, \ldots, \boldsymbol{\mathcal { X }}_{d}\right), \quad \mathbf{X}_{k}\left(i_{k}\right)=\mathbf{Z}_{k}\left(i_{k}\right) \otimes \mathbf{Y}_{k}\left(i_{k}\right), \quad k=1, \ldots, d
$$

- Inner product of two tensors
- Apply Hadamard product followed by multilinear products with vectors of all ones.

Relation to Other Models

- CP decomposition is a special case of TR when cores are slice diagonal

$$
\mathcal{T}=\sum_{\alpha=1}^{r} \mathbf{u}_{\alpha}^{(1)} \circ \cdots \circ \mathbf{u}_{\alpha}^{(d)}
$$

$$
\begin{gathered}
\mathcal{T}=\Re\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{d}\right) \\
\mathbf{V}_{k}\left(i_{k}\right)=\operatorname{diag}\left(\mathbf{u}_{i_{k}}^{(k)}\right)
\end{gathered}
$$

- Tucker decomposition

$$
\begin{array}{ll}
\mathcal{T}=\mathcal{G} \times_{1} \mathbf{U}^{(1)} \times_{2} \cdots \times_{d} \mathbf{U}^{(d)} & \mathcal{T}=\Re\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{d}\right) \\
\mathcal{G}=\Re\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{d}\right) & \mathcal{Z}_{k}=\mathcal{V}_{k} \times_{2} \mathbf{U}^{(k)},
\end{array}
$$

- TT decomposition is a special case of TR when $\exists n, r_{n}=1$

$$
\begin{aligned}
& T\left(i_{1}, \ldots, i_{d}\right)=\operatorname{Tr}\left\{\mathbf{Z}_{1}\left(i_{1}\right) \mathbf{Z}_{2}\left(i_{2}\right) \cdots \mathbf{Z}_{d}\left(i_{d}\right)\right\} \\
& =\sum_{\alpha_{1}=1}^{r_{1}} \mathbf{z}_{1}\left(\alpha_{1}, i_{1},:\right)^{T} \mathbf{Z}_{2}\left(i_{2}\right) \cdots \mathbf{Z}_{d-1}\left(i_{d-1}\right) \mathbf{z}_{d}\left(:, i_{d}, \alpha_{1}\right)
\end{aligned}
$$

TR is a sum of TT representation

Data Structure Reconstruction

16×16 block

The first order represent a $\mathbf{2 \times 2}$ pixel block. The second order represent four above block.
...
16×16 block image to $4 \times 4 \times 4 \times 4$ block format:

1. Reshape to $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$.
2. Permute by $\{1,5,2,6,3,7,4,8\}$.
3. Reshape to $4 \times 4 \times 4 \times 4$.

Figure 1: The effects of noise corrupted tensor cores. From left to right, each figure shows noise corruption by adding noise to one specific tensor core.

Learning efficient tensor representations with ring structure networks (ICLR Workshop 2018)

* Representation of original data or model parameters
* Tensorization is important and unexplored

Table 4: Image representation by using tensorization and TR decomposition. The number of parameters is compared for SVD, TT and TR given the same approximation errors.

Data	$\epsilon=0.1$		$\epsilon=0.01$		$\epsilon=9 e-4$		$\epsilon=2 e-15$	
	SVD	TT/TR	SVD	TT/TR	SVD	TT/TR	SVD	TT/TR
	9.7e3	9.7 e 3	7.2 e 4	7.2 e 4	1.2 e 5	1.2 e 5	1.3 e 5	1.3 e 5
Tensorization	$\epsilon=0.1$		$\epsilon=0.01$		$\epsilon=2 e-3$		$\epsilon=1 e-14$	
	TT	TR	TT	TR	TT	TR	TT	TR
$n=16, d=4$	5.1 e 3	3.8 e 3	6.8 e 4	6.4 e 4	1.0 e 5	7.3 e 4	1.3 e 5	7.4 e 4
$n=4, d=8$	4.8 e 3	4.3 e 3	7.8 e 4	7.8 e 4	1.1 e 5	9.8 e 4	1.3 e 5	1.0 e 5
$n=2, d=16$	7.4 e 3	7.4 e 3	1.0 e 5	1.0 e 5	1.5 e 5	1.5 e 5	1.7 e 5	1.7 e 5

Figure 7: The classification performances of tensorizing neural networks by using TR representation.

Discussions

-What are the most important advantages of tensor methods?
-Which kind of tensor methods is promising in the future?

